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ABSTRACT

The optimum coplanar flight between assigned orbits is consi-

dered in this work, It is realized with the aid of a boost with mini-

e

mum value of characteristic velocity. This ensures the minimum fuel

e+

consumption, It is nostulated that the motion on all orbits, whether

initial; intermediary or final, is §gg%§;ian. Two cases are considered,
the flight between circular orbits and that between orbits of small
quggﬁz}gity. The casés of flight without taking into account the
motion time, and those when account of concrete motion time is taken,

are dealt with separately.

In the first approximation it is possible to relate these pro-
blems to those of space probes to lars, Venus and other planets of the
solar system, as , for example, the flight of the interplanetary auto-
matic station "Mars-1". The problems linked with AES orbit variatioms,
and, in particular, the coplanar problem of hitting another satellite
from an assigned AES orbit by means of a unique impulse (boost), minimum

from the standpoint of mass consumption, also belong to thati category.

*
* *

#1, - MINIMUM OF THE FUNCTION DEFINED BY A FAMILY OF VARIABLES
WITH TWO DISCONTINUITIES

Let yi=yi(x), i=1,2 ...,n , (1,1

be the unknown function of an independent variable xEja,b], continuous



2.

everywhere with the partial derivatives with the exception of two
ordinary discontinuities of the first kind at two points X, X,

unknown beforehand.
Whenever they are continuous, the functions (1,1) must everywhere

satisfy the system of differential equation

dy; :
B =filx, y) L J=1 2., 1, (1.2)

assuming at the same time that the conditions of theorem existence and

uniqueness are fulfilled.
We shall introduce the following denotations:

Yna=Yi(a), Yir=Yi(x,+0), yi =yi (x;+0),
Yin=Yi(6—0), yie=yi(X:—0), ynp=y;(b). } (1.3)
Fop the values of variables (1,1) at end points a, b and at points of
discontinuity xj, xp there is the system of conditions
Ps (a: b, X1s va )’imc Yi ylls Yia inZ’ )’izb)':-O,
s=1,2,..., r<in+44. (1,4)

Let us consider the assigned function

_—

g==g1a, by, X0 Ko, Yivas Yoy Yive Vi Visss Yish). (1,5,
Functions (1,1) must be found, satisfying both, the differential
equations (1,2) and the conditions (1,4), and also the end points a, b
and the discontinuity points xj, xp so that the function g have a
minimumnm,
ile shall provide the solution of the variational problem posed,

if the general solution of the system (1,2) is known:

Cp=yi—yi(x. j) =0, i, f=]1.

[

I (1,6)
where cj are arbitrary constants. Ve shall estimate, that the functions
®; have continuous partial derivatives over all the arguments, and that

the determinant
oy

e O (1,7)




Denoting
Y (X, CJ:)—)' (x) at x€la, v},
)’tl(x cj)‘—)’x(\) at XClv, Xl (1,8)
yl’(‘\ cj!)—'y (A') at XE‘-\'% b ls )
h : )y —— 24 )’
we have )’ua—'}’ll (a, ¢, i =Yi(%, /) v;—b-—f’:"ﬁg ;;)’ } (1,9)

Yin -—)’u (x5, €1y Yir= yi (%, <)), Yi

As a consequence of correlations (1,9), the conditions (1,4)
will be
?S(a" b' ‘th er len ij ng)—_—o, (l'lo)
and the function (1,5) will take the form
g=4g(a, b, x\, x5 €y, € Cj2). (311)

The earlier-formulated problem is reduced in this case to the
equivalent problem of finding the minimum of the function of finite
number of variables. What is required is the determination of the
function (1,8), i. e. the finding of the value of arbitrary constants
Cj1» Cj» Cjss and of the points a, b, x7, x;, satisfying the system of condi-

tions (1,10) in such a way, that the function (1,11) have a minimum.

If at extreme values of arguments the functions (1,10) and (1,11)
have continuous partial derivatives of the first order,then, as is well

kxnown [1], it is necessary that there exist such constant multipliers

y W WS ) for which the conditions
N, Oz V. dge ' :
\ g 0; +\ S =0, (1,12)
ig NY) 99 N V) 9%
ox; T § As oy = o ot \ %s Gy = O, 113
2
5=1 S—l
Y dos gz . j 05
0c. + ‘ SOCJI =0, dcjy le Ocj2 =0 (114)
S—l s=1
r
og SV O Py
%74.}318‘“; =0, j=1,2, ..., n (1,15)

s=1

are fulfilled, HMoreover, if by its arguments, the rank of the matrix



constituted of partial derivative functions (%(anb:xh X§4yn Cp Cp)
is equal to r, the multipliers My Ay ooy Ap - are unique.
Therefore a system of necessary conditions (1,12) — (1,15),
(1,10) is obtained from 3n + r + 4 equations with the very same number
of unknowns «, &, X, x., <ji, Cj Cjs, s -for the solution of the problem
set up.
In the case of a problem with fixed ends, i.e. at values
a, b, Yna, yizin Tixed beforehand, the constants ¢, Cz. will be found
unilaterally, as a conseguence of the correlation (1,7), and the equa-
tions (1,12) and (1,14) in the system of indispensable conditions (1,10)
and (1,12)~ (1,15), must be rejected.

#2.~ SYSTEM OF NECESSARY COLDITIONS IN CASE OF A FLIGHT WITHOUT
TAKING INTO ACCOUNT TH: MOTION TIME IN ORBITS

We shall define the complanar Keplerian orbits by the following

elements:

1 ¢ )
— =, @ (2|1)
P= a(l—-e’f' q -'/'a(l__g:}

where a, e, W are respectively the major semi-~axis, the eccentricity
and the angular distance from the pericenter to the polar axis. The
polar angle < will be taken as the independent variable,

Assume that the initial orbit has the elements /fi. v “, and
the final one — o, Ju ©2 The impulse, as a result of which we
obtain the intermediate orbit of the flight with the elements p, q, |,
takes place at the time when the polar angle is 1. At $=9, this
orbit will intersect the final orbit. We now must find the flight orbit
for assigned initial and final orbits, i, e, its elements p, q, w and
also the angles e&_and 52, in such a way, that the value of the character-
istic velocity of the initial impulse be at the minimum,

Since tne elements of the boundary orbits pi, i, ©;, and Ppa gs. @
are assigned, we shall utilize for the system of necessary conditions
the equations (1,13) and (1,15), in which x; and x> play the role of
31 and #2, and Pir G5 ©n Py G5 @ P2 G20 @ are respectively taken for



At elements' disconitinuity points the following conditions

must be fulfilled:
g1=p* -+ pg cos (I, — &) — p} — p,q; cos (¥, — w,) =0, 2.2)
¢e==p -} pq €08 (V¥ — ) — p; — p.q, cos (ik, — w,) =0, 2.3)

which, as a consecuence of correlations

1 2 Cos (3 — o)
a(i—c?) + a{l—e?)

=p*+ pq cos(t —o) (2.4

denote the continuity of the values of radius-vectors at these points.

[ )
We shall use for the function g

i
g=gx7 [(Vr. =V, (Vs — Vil (2,5)
where 'V; Vi and V,, Vs are respectively the radial and transverse
vector components at the point of the initial impulse, prior and after

the latter, and
K=kY M. (2,6)

In the latter correlation k is the gravitational constant, M is the
mass of the central body M, Ve neglect the mass of the rocket by com-
parison with that of the central body, and also the masses of planets

by conparison with that of the Sun, whenever we analyze interplanetary

For velocity components, we have:

. i —_ - ._——:-—:2—. (

=S gsacm, i ST

and analogously
X

er‘ = l\’ql sin (ﬁ, — o)), V‘ o= 7;.7:- s (2‘0)

where ry is the value of the radius-vector at time of initial impulse.
Taking advantage of correlations (2,7), (2,8) and of dependences
rit=p* - pq cos (¥, — 0) =pi =+ p.q, c0s (0, — ), (2,9).

we transform the function (2,5) as follows:

>

pA 2 » 5 Y
g+, ¢t ot Py W)
g= 1 il +5 — P ‘]q;LOS(mI u) ;
il
. . 4] 9
-, cos (¥, —'"‘1)[—2171 —p ‘"TJ . (2,10)



Effecting the differentiation, we obtain in the final form

the system of necessary conditions:

2

A : p.. . A .
g,sin(3, — ;) {2[’1 —p —“‘i:‘J ~+ 4y [pg sin(@; — w)— pyg, sin (§; — oy)] =0,

) (2,11)
e [pg sin (¥; — o) — pog, sin (8, — w,)] =0, (2,12
! 14 ' ” - .
— P+ 5 T qucos (h —w) !/I;'— — 1] + . 12p + g cos (h, — )] +
+2e [2p+ g cos 9, — )| =0, (2,13)

g — g,c08 (0 — @) +Ap cos (it — ) - Ayp cOs (hy——w) =0, (2,14)
g b= qisin(o, — o)+ A psin (¥ — o) - A,psin (h, —w)] =0, (2,15)
P’ pg cos ( — o) — pi — pig; cos (¥ — w;) =0, (2,16)
P*+pgcos (i, —w) — pt— p,q, cos (I, — w,) =0. 2.17)

The last system consists of seven equations with seven unknowns p, ¢,
o, b, 9, i, 1. The equations (2,12), (2,17) & (2,14), (2,15) may

respectively substituted by the following ones, considering that in

(2,14) and (2,15) q # O :

g COS © == p.q, COS wy -~ ( P3 — p*} COs ¥y, (2,18)
Pg sin w==p.g,sin 0,4 ( p3 — 1) sin iy, (2,19
g cos 0 =g¢, cos &; — p(r, cos ¥, 1, cos ), (2.20)
gsinw=g,sine, —p(&;sin ¥ 42, sin &,). (2,21)

Remark 1.~ The multiplier A, is % O. In the opposite case
the system of eguations (2,11) — (2,17) would break up into two inde-

pendent groups (2,11) — (2,16) and (2,17). The last equation (2,17)

is the condition of flight orbit intersection with the final orbit.

As to the first group of equations (2,11) — (2,16), it would define
the transition to flight's intermediate orbit with minimum velocity
accretion, without any kind of limitations. It may be shown, that
such a minimum will be on the flight orbit coinciding with the initial

orbit, but this case is excluded from the consideration as being trivial.




Remark 2.- Assume that p,q, #W are found., Then the eguation
(2,17) will give, generally speaking, two values for the angle 32 .
As to the equation (2,12), it is the condition for the coincidence of
these two values, as is easy to verify., Therefore, tangency of the
flight orbit with the final one will take place at the point Jé, as
this should be expected from the purport of the problem set up,

Remark 3,- It follows from the equations (2,11), (2,15) and
(2,16) that the tangency of a noncircular flight orbit (g & O) with
the initial orbit at the point of initial impulse is only possible

in the case when the lines of apsides of the three orbits coincide,

#3, = FLIGHT BETWEEN CIRCULAR AND SMALL ECCENTRICITY
ORBITS WITHOUT TAKING INTO ACCOUNT THT TIME
OF MOTION

In case of circular boundary orbits
7:=0, g:=0. .0
From the equations (2,11) and (2,12), we have
sin (¥, — »)=0, sin(F.—w)=0. (3.2).
since we are in a position to show that A]_=:O does not satisfy the

remaining equations. Rejecting the trivial case %;=%,, , we obtain

from the inequalities (3,2) two possibilities:

3, =, {)2:“’—}‘:' (3‘3)

h=—w—=, 02 =— w, (3'4)
Let us introduce dual signs i the upper cnes for the case (3,3), the
lower ones for the case (3,4). The correlations (2,16) and (2,17)
will then give

' U 9 9
n+ I’z M P2 _
I' +P2

Since q > O always, we shall obtain in the case (3,3) the
flight from the orbit of lesser radius to that of greater radius,

i.e. ry>n, py>p. and the opposite in the case (3,4), i.e. <7, P <p»



The equation (2,15) is satisfied automatically. From the equa-

tions (2,13) and (2,14) we find

N Lol N L) ,
1 __4?- ) > e '_—45“—— . (-‘;,6)

Passing to Keplerian elements in formulas (3,5), we have:

a,—a g T
—-——'az+al . (l';,l)

where indices 1 and 2 denote the respective reference to initial and

l : , .
a=-5(t,--a,), e=*

final orbits,
Therefore, in thec given case the Homan ellipse resulted to be

igue
the?gp%imum orbit (with a precision to arbitrary choice of ).
Iet us consider now the flight between orbits of small eccen-
trieity, introducing the small parameter, so that -
g,=:2q;, ¢,=¢24, (3,8)

We shall seek the solution of the optimum problem, i.e. the
solution of equations (2,11) — (2,17) in the form of series by powers
¢ and retain only the terms of the first order. We shall denote by
strokes the coefficients of series at first powers of €, and without
strokes — the quantities taken on the Homan ellipse.

By the strength of the system (2,11) — (2,17), and introdu-

cing the denotations 4, B, R, S, we obtain

%_d:ipmSMWWw”%"k%+h*4=A’ @ﬂ

Mg .
o ’ = I’Zqi i . ’
h—w =% 75— Siil (02—‘““’;)'—38» . (3!10)
< : . . Lt P 1); i L
(2p £ q)n1 - (2p = g)ra=Cos{i, — ;) ll _p—‘-’J @ F (m—2)qg+
1 2[)3 y y
+(1T}§"“-“x*2"?)1":}?v (3,11)
PR T phos=cos (w—w) gy T (h, — k) p' — ' =S, (3.12)
=g (9—o') Tiopg (2 — ') =gsin (o, —w) g, (3,13)
(Cp = @)p" & pg’ =p.g,; cos (i}, — w,), (3,14)
(2p 5 Q)p’ F py’ =pug,c08 (—wy). (3.19)
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From the equalities (3,9), (3,10) and (3,13) we find

1o
1 (O]

s 2(p; —-p)+1ypjsineg -- ppa Ay STN @)

___/xq3[ PL—p) . ‘ul‘ 1 Prgahasines (3,16)
Py 2Py — p) + M p] cos oy — ppyda k; cOs vy

The equations (3,14) — (3,15) will give

Pty €S (5 — ) £ Pagy €OS (B3 — )

(3J7)‘

r= - i |
Mg, (@ F2mceosJ, — e Tp,qg' (4 = 2p)cos (83 — w,)
g=— —s > . (318)
while from the ecuations (3,11) and (3,12) we have:
o pR—(gF 28 o R— (4 =2p)S
= _(“l_p;”_’.’l_ , Az:’f_(gpg_"’_)_ ) (3,19)

In the equation obtained by substraction of equations (2,11)

and (2,12) from (2,15), we shall compute the terms of the second order

relative to @

ad+ 8%y’ =C, (3.20)
where |
aéﬁ[ﬁ-ﬂﬂ—m%?dﬂMM-QFWMEmN%—w}
a:plq;:r‘;%'"I_‘%L_Q‘;‘;*I]COS("I—‘“X)’ 3=P2,q‘:>?~2C05(“r""‘23~? (3.21)
1= qq, cos (v, —o). \
For . . 9, we shall find from (3,9), (3,10) and (3,20)
rmtABBLC o A Yy=—o +B. (3,22)

RS E
Let us now compare the results obtained with those by Lawden
(2] from a two-pulse flight between orbits, In this last paper the
value of the characteristic velocity of the initial and final impulses
(vboosts) is minimized. The correction formulas for the eccentricity
and the parameter are equivalent, i, e, the shape of the orbit is
the same in both flights. In the expressions for tg w the coefficients

standing at trigonometric Junctions differ from the corresponding

coefficients of formula (2,16),
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#h,~ MOTION TIME ALONG THE ORBIT

We shall find now the motion time along the orbit as a function
of the polar angle v . Assume that a polar angle 13’1 corresponds to the
time ¢7 and a polar angle -32 to the time t,. We shall introduce the

function
o=K({t,—)=%(@, ¥, p, g, ©), : ' (4,1)

where K is given by the formula (2,6), and p, g, w — by the elements
of the orbit considered.

From the surface integral

re 1;—.;— =Kp~' - (4,2)
it is easy to find that bow
e pa— C dv I's
1=r ) G- “-3
h—w .
We shall compute the partial derivatives if the function
oy 1 e 1 '
Gy plpFqeos(p— T 0% T plpigcos(H—w) (4,4)
0 _ 9 ov !
Gor =TT, Ty (4.5
o e e d
-— e p—2 _hv __9p—1 £ . av ;
w = F (p+qcosv)? 4 j (p+gqcosup (4,6)
9 —w U—o
o Jy—w .
O op 1 | ___COsY__
== 5 G Tgcosopd? (7>
o

Expanding the function ¥ by by powers of eccentricity e =

'd|'°

with a precision to the terms of the first order, we obtain

52—3,

Y — s .‘_:.‘7.' i\‘\ — —_—i i} w1 14 O\
Y=""p o 18in (83 — @) — sin (¥; — ). 4.8y

We shall find the function ¥ and its derivatives in case of flight along
the Homan ellipse. Let .\"1 be the polar angle at time of initial boost,
and \?2 — the polar angle at time of encounter with the final orbit.

Then we shall have

../’O.
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[ — *————-."‘—‘ s : ‘ (4v9)
T (pr— gt
S NN Ny P S
s PP FaE plptglr ' 0w P =g (4,10)
O Bm O %m
BT - Y (= j

#5, - SYSTiM OF NECESSARY CONDITIONS IN THE CASE OF FLIGHT

TAKING INTO ACCOUNT THE CONCRETE MOTION TIME
ALONG ORBITS

We shall consider two material bodies moving along the initial
and final orbits, Depending upon the concrete physical problem, we‘qan
take for each material body either a rocket, a satellite or a planet.
Wle shall neglect the masses of bodies relative to that of the central
body, and also the diménsions of material bodies.

Assume that T1 is the time of passage through the pericenter
on the initial orbit &ith elements P, d1 %11 obviously, at that time
the poler angle of the first material body will be @y . To the moment
T, of passage through the pericenter over the final orbit with elements

De, ¢y wy Will correspond the polar angle Wo. '

At the time t,, when the polar angle is equal to ﬁl, there
takes place a boost (impulse), as a result of which the first material
body changes its orbit. At the time t,, when the polar angle is Jé,
the intermediate orbit of the flight intersects the final orbit, and

the material bodies meet.,

We must find the flight orbit, i. e. the elements p, q, w, and
also the times ty and t, and the polar angles ﬁ,'zlin such a way,
that the value of the characteristic velocity of the initial boost
at the time tl be minimumnm, A

We shall use the equations (1,13) and (1,15) as the system of
necessary conditions with the corresponding substitituion of denotations
as was done in #2. The expression (2,10) is valid for the function g.
The conditions (2,2) and (2,3) must be fulfilled at elements' disconti-
nuity points. But vesides that, it is necessary to add the conditions

of motion time coincidence till the encounter of material bodies.
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Wle shall introduce the following denotations:

»=K(T,—T), 3,1)

=Kt —T)="3(d, o, p, ¢1, o)), (5,2)

Y=K{lb—15)="1( 4, p. ¢, ), (5.3)

Y =K({t,— T)="1(, @5 ps G2, @) (5.4

From the identity : '
K(tx—'Tl)'{"K(t:"’fi)—K(tz_Tz)""aEO (5,5_)

we shall obtain Wy =y — oy —a==0. (3.6)

The condition oi moticn tliie coincidence may be determined by
a different method. Assume that t; is a certain moment of time; w is
the polar angle of the first material body; o is the angular dlutance
between the bodies at this time, computed from the first materiasl body.

Then it is necessary that
"")(&i' ®g, ph ql’ “':)7‘-?(“20 &lv pv q) m)_".J (“2' m0+:, Pza qz- mg):{o. (5'7) .

Remark 1.- It is assumed in this work that the encounter of
material bodies takes place during the first convolution or fliigni ouruwit
or that ¥, -9, <2awm.

Remark 2.- The ar-laz 9, &, must be measured continuously

from the polar axis, an.’ shoulc not be bounded by frames [0, 2=|.

The system ol nccessary conditions in the final form will be

g, sin(¥;, — o)) [Qpl —-p—-]i] -+ 1' [pg sin (¥, — @) — p,g, sin (&, — o,)] -
(=~ ) =0, (5.8)
b2 g sin Oy — )=tz sin Oy — o]+ (& —%)=0 9

2

—p+k 7 +qlcos (h—w) {————1]-1-"‘1 [2p+- g cos (9 — )]+
2o — o) +hat=0, (5100
g—q,cos (w,——m)—}-l,pcos(ﬁl—m)+lgncos(8,—m-)+1,-3%:0, (5:11)
—4gs5in oy — @)+ Xipg sin (3, — @)+ ipg sin (%, — w).;.x,j;i:o, (3,12)
P*+pg cos (9, — @) — pi— p.g, cos (¥, — ) =0, (5,13)

p* =4 pg cos (b —w) — pi— pg; cos (8, — w,) =0, (5,14)
byt —Y, —a=0. (9,19)
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The system thus obtained consists of eight equations with

eight unknowns : iy, U, p, ¢, ©, &, Ay, 7.

#6,- FLIGHT BETWEEN CIRCULAR ORBITS TAKING INTO ACCOUNT
THE MOTION TIME
In case of circular boundary orbits
qX::O’ q2=O (6,1)
Taking into account (4,8), we shall find

h —o; & e g — oy
3 D=
i Pa

Y —
'Jl._

(6,2)

Effecting the substitution of the correlations (6,1) and (6,2)
into the system of equatiomns (5,8) — (5,15), we shall find, that it
follows from the equation (5,11) that all 4, 4,, 4 are not simultanous-
ly equal to zero, That iz vhy the determinant, composed of coefficients
at the multipliers A, A, Ay in the homogenous eguations (5,8), (5,9),
(5,12) must be cgual ito zero. Let us compute the indicated determinant:

. < 0"4' ()Q_J d':“ - ..L —_— ._'l.-‘ g K
pg*sin (3, — w)sin (3, — @) (aT T, te T TR )—0. (6,3)
Trom thea correlation (4,5) and the equality (6,3) it follows, that
either sin(), —o), or sin (¥y—o) are equal to zero, We shall wrove that
in both cases
Ay =0. (6,4)
Let us assume the opposite, i.,e, that A, +0. Assume that sin(}, —w)=0;

then, it follows from the equation (5,8)

LI L

p? T oy plptgcos(h—e)2 T p: !
and hence p = P}, which is in contradiction with the equation (5,1i3).
Similarly, we may show that (6,4) follows from sin(ih, - @)=0

The eguality (6,4) implies that the system of equations (5,8) —
(5,15) splits into two groups: (5,8) — (5,1%) and (5,15), The first

group of eguations coincides with the necessary conditions of the optimum
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problem without taking into account the motion time (#2) and thus has
a unique solution — the loman ellipse. The eguation (5,15) is the cone-
dition of motion time coincidence and can always be satisfied by the

appropriate choice of angular distance of the pericenter w,

Taking into account the correlations (4,9), (6,2), we have
from (5,15)

3 + = — = —a=0, (6,5)

» (»— " P

o

us note that here W, in the ancle, rusponding to the position of

2

ot

the first material body-;n the initial oroit at the time le 02 is the
angle responding to the position of the second material body on the
final orbit at the time T2. If the boundary orbits have small eccen-
tricities, it is natural to keep for @, @, the sense of angular distan-
ces of pericenters already in the approximation of the zero order rela-

tive to these eccentricities,

Passing to Keplerian elements, it is respectively found in the

cases (3,3) and (3,4)

s
—_ . AN

4oy L
io R — —
"= - ) i : 4 ‘;' ‘J,"[i 3 al welly '/ Gamn 2
ayy oy oy ds iy Va, ~ day @a i (6,0,
N . i
"’l =w, Uy > U, ;
. o
P A B i )3" }
1y 4 (— ] . ey @y — ey g - w | .
W) o T T ptee s e g e e D T e R - ¢ 6.7 )
. / / / .
a3 ay —azy ag Y a—a.y us ‘
Hh=w—=, « Zu,. J

Taking tle condition of motion time coincidence in the form (5,7

we world obtain in exactly the 3same way

' 5

ng,/Z;_-(jkggjﬁgl —
\ 2 - Qy 8 l 6.8
W=, — T — — —_ — =— 3
v aVa—aya aya—a,yVa'’ (6.8)
=, a>a,
ar) - (G N3
A ~_ e
W= W, = w = 7 T [ =" (6,9)
ayy ay—azy az ayyay—ary a
h=w—=, a;<a,.

)
’

’
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#7. - PERIOD OF OPTIMUM SITUATIONS' RECURRENCE

It follows from formules (6,6) and (6,7) that & unique w is

to be found for every e, w, ¢ x ., We shall take in formula (5,1)
Q . 0
Ty =T1 + ny I3 Tp= T3 + 0, TIp  (7,1)

where n, n, are the revolutiion periods over the initial and final
orbits, =ny, n, are whole numbers. 7}, T?. are certain fixed values

of noments of passage time through the pericenters. Therefore, for each
ny, n, one may compute corresponding to them. If the closest moments
of time among themselves are chosen for T, and T,, we shall obtain the

least value of @ responding to these time moments.

Let us find the variation period of the optimum value (the
period of polar angle Aﬁlvariation will be the same),which is tantamount
to the determination of the time period in the course of which the
otpimum situation will recur. ¥We shall use the interplanetary flight

terminology for the sake of brevity.

We shall analyze the case of circular motion, for example at
@, >a,. We shall continuously vary the initial data in formula (6,8)

and see how ® will vary., By the strength of the correlations

2 ~ 2= -
a)o=woo~+—ﬁ’:—(t——-t,), m.—_———ﬁ%(t—-—to)—}-an, - (7,9)

where @Wn,is the initial value of Wg 3 ITIg is the synodical revolution
period of the finite planet; n is the number of complete synodycal

periods, we shall obtain frow formula (6,8)

L a,ﬁ,
o=, - o0 ——2" =
o + ay a; — ”ZV/T‘: + T axy az —ay @ (7’3)

It follows from the last correlation that @ has one and only one optimum

value in the course of the synodical revolution period of a finite planet.
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Let t, bLe the oprosition time at ay; > a; or the time of
lower'conjunction at a3 >a>, and B, - the planets' polar angle

at that moment of time. From (56,38), (6,9) we shall have:

3 L 3

o Juy = HE
R e
emotr e el e e, 79
o=wy}= pow h=o—=, a; < a. @5

Thus, the polar angles alvays differ by a constant angle from
the cpgosition times at times of o.tiuum position of the initial thrust
(boost) [ see formulas (7,%), (7,5)] (or from the moments of lower con-
junctions if a; > ap ). The mean period of optimum situation recurrence

is equal to the mean synodical veriod of revolution of the finite planet.

EXAMPLE,~ Let us consider the flight from Farth to Mars. In the
astronomical unit sustem a; =1, a> = 1,524, whence W = — 0.525n + 6)0,
with the angle 0,525x corresponding to 96 mean solar days. Thus, at
optimum flight to Mars, it is always necessary to take off 96 days
before the times of Mars opposition, Such a moment took place on October
31st 1962, since liars' opposition was on 4 February 1963. The mean
period of optimum situation recurrence for the flight to Mars is equal

to the mean synodical period of Mars rotation, i.e, 780 mean solar days.

#8,- FLIGHT BETWEEN ORBITS OF SMALL ECCENTRICITIES
TAKING INTO ACCOUNT THE CONCRETE
MOTTION TIME

We shall assume that ql_and qz' are small., We shall introduce
the small parameter & according to formulas (3,11), We shall seek the
solution of the optimum problem, i.e, the solution of equations (5,8) -
- (5,15) in the form of series by powers &, We shall designate by stro-
kes the series' factors at first powers €, and without strokes — the
solution on lLioman ellipse vith the appropriately chosen & (as was done
previously (see (6,6)— (6,9) ). We shall retain only the terms of the

first order of smallness,
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Taking into account the correlations (4,8) — (4,10), and intro-

~

ducing the demotations A, B, C, we find

#— o = ﬂwlm,(” | ,,+f~1—-2)sm(ﬂl—«>l)+”*“” =4 @
4
'“'2— ™ hepq { 2plq251n (‘)2—‘”")7-1’}”” ] E (8v2)
) A T i QP']‘ y - - ’_
(27 = PN T 2PT QM= 1—:——;,;—%—2% PFPFM—l)g +
] 4 v oy p '
’!'('p—._,_'js'gl';;—)ﬁ"a'rcos (al_“’l) [1 1] qp (813)
Al o a# — N ’ 3 ~ »
1 piy F o= (M—#) P —1 —62—_4’;,,)—;,513+cos (0, —w)q;, (8,4)
- ',pq(.) —w') =i /u/m —w)= (I'."_"qz’—_ /..:——-qqlsm (0, =), (b )
(2p - Np +pt[ =p.q, Tcos (Y, — o), - (5,6)
@pF Qo = P =p, ws(’ —~) (8,7)
M=Py o Py = e R - S
ma SRR ): Y w \l"— et L(pp’ qq" - |
‘:mum-«q:' SR ), e
+ 0 — =T (8.8
V&) Fi8)

The equations (3,6), (8,7) coincide with the equations (3,14),
(3,15), and hence formulas (3,17), (3,18) follow directly for p', a'.
The latter means, that the shape of the flight orbit will be the same

a5 in the case of the problem without taking into account the motion time,
As a conseguence of equations (2,1), (8,2) and (8,5), we have

p,ql(!--l-p + -2 ’] ) sin (§; — @) -L;hq,,fz sin (3, — wg)

P
T —'1' —3 (8,9.
P TP
From the equations (3,1), (3,2) and (8,8) we shall have for
oty ) = B we'—ppyt)—C (5.10
N P:;.% _p;s ) ) y )
AT e = (e ) =€ 8
Py p:—.'i_pl 3 E3 ( ,11)
—~ . N ~ L -
LA et —Bipg —prt)—C
w= 3 -3 . (8,12)

P~ Py
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Formulas (8,9) — (8,12) and (3,17), (3,18) provide the correct-
ion to the Homan ellipse flight orbit in the case when the initial and

final orbits have small eccentricities.

Remark.~ The initial angle of the pull at initial thrust is
not clearly figured in the work, The tangent of this angle may be easi-
ly found as the ratio of the radial to transverse velocity accretion

component.,

In conclusion I convey my sincere gratitude to my leader

Prof. V. S, Novoselov for his constant aid in the work.
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